Dosimetry and dose planning in boron neutron capture therapy : Monte Carlo studies
نویسنده
چکیده
Boron neutron capture therapy (BNCT) is a biologically targeted radiotherapy modality. So far, 249 cancer patients have received BNCT at the Finnish Research Reactor 1 (FiR 1) in Finland. The effectiveness and safety of radiotherapy are dependent on the radiation dose delivered to the tumor and healthy tissues, and on the accuracy of the doses. At FiR 1, patient dose calculations are performed with the Monte Carlo (MC) -based treatmentplanning system (TPS), Simulation Environment for Radiotherapy Applications (SERA). Initially, BNCT was applied to head and neck cancer, brain tumors, and malignant melanoma. To evaluate the applicability of the new target tumors for BNCT, calculation dosimetry studies are needed. So far, clinical BNCT has been performed with the neutrons from a nuclear reactor, while an accelerator based neutron sources applicable for hospital operation would be preferable. In this thesis, BNCT patient dose calculation practice in Finland was evaluated against reference calculations and experimental data in several cases. Calculations with two TPSs applied in clinical BNCT were compared. The suitability of the deuterium-deuterium (DD) and deuterium-tritium (D-T) fusion reaction-based compact neutron sources for BNCT were evaluated. In addition, feasibility of BNCT for noninvasive liver tumor treatments was examined. The deviation between SERA and the reference calculations was within 4% in the phantoms studied and in a brain cancer patient model elsewhere, except on the phantom or skin surface, for the boron, nitrogen, and photon dose components. These dose components produce 99% of the tumor dose and > 90% of the healthy tissue dose at points of relevance for treatment at the FiR 1 facility. The reduced voxel cell size ( 0.5 cm) in the SERA edit mesh improved calculation accuracy on the surface. The erratic biased fastneutron run option in SERA led to significant underestimation (up to 30–60%) of the fastneutron dose, while more accurate fast-neutron dose calculations without the biased option are too time-consuming for clinical practice. The SERA calculations for thermal neutron fluence are also accurate (within 5%) in comparison to the activation foil measurements at FiR 1. Large (> 5%) deviation was found between the measured and calculated photon doses, which produces from 25% up to > 50% of the healthy tissue dose at certain depths.
منابع مشابه
10B Concentration, Phantom Size and Tumor Location Dependent Dose Enhancement and Neutron Spectra in Boron Neutron Capture Therapy
Background: The amount of average dose enhancement in tumor loaded with 10B may vary due to various factors in boron neutron capture therapy.Objective: This study aims to evaluate dose enhancement in tumor loaded with 10B under influence of various factors and investigate the dependence of this dose enhancement on neutron spectra changes.Material and Methods: In this simulation stud...
متن کاملDosimetry Impact of Boron and Its Carriers Structure at Boron Neutron Capture Therapy of a Brain Tumor; A Sim- ulation Study
Introduction: Boron neutron capture therapy (BNCT) is a method of cancer treatment and potentially, two borono-L-phenylalanine (BPA) and sodium borocaptate (BSH) are used in BNCT as common boron carriers. Some previous studies have shown that the dose rate is directly related to boron concentration in the tissue. This study aimed to simulate the structure of boron carriers and brain tumor compo...
متن کاملDosimetry Impact of Boron and Its Carriers Structure at Boron Neutron Capture Therapy of a Brain Tumor; A Sim- ulation Study
Introduction: Boron neutron capture therapy (BNCT) is a method of cancer treatment and potentially, two borono-L-phenylalanine (BPA) and sodium borocaptate (BSH) are used in BNCT as common boron carriers. Some previous studies have shown that the dose rate is directly related to boron concentration in the tissue. This study aimed to simulate the structure of boron carriers and brain tumor compo...
متن کاملDesign and Simulation of Photoneutron Source by MCNPX Monte Carlo Code for Boron Neutron Capture Therapy
Introduction Electron linear accelerator (LINAC) can be used for neutron production in Boron Neutron Capture Therapy (BNCT). BNCT is an external radiotherapeutic method for the treatment of some cancers. In this study, Varian 2300 C/D LINAC was simulated as an electron accelerator-based photoneutron source to provide a suitable neutron flux for BNCT. Materials and Methods Photoneutron sources w...
متن کاملAn investigation into the potential applicability of gel dosimeters for dosimetry in boron neutron capture therapy
Background: The aim of this work was to establish how well gel dosimeters performed, as substitutes for brain tissue compared with standard phantom materials such as water, polymethyl-methacrylate (or PMMA), A150 plastic and TE- liquid phantom material for dosimetry of neutron beams in boron neutron capture therapy. Materials and Methods: Thermal neutron fluence, photon dose and epithermal neu...
متن کاملInvestigation the potential of Boron neutron capture therapy (BNCT) to treat the lung cancer
Introduction: Boron neutron capture therapy (BNCT) is recommended to treat the glioblastoma tumor. It is well known that neuron beams are more effective treatment than photon beams to treat hypoxia tumors due to interaction of neutron with nucleus and production of heavy particles such as 7Li and alpha particle. In this study to evaluate the suitability of BNCT for treating of ...
متن کامل